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This study investigates the mechanisms that contribute to determining the maximum spreading of 
a liquid droplet impacting a solid surface in connection with splat-quench solidification. This 
paper defines two domains, the viscous dissipation domain and the surface tension domain, 
which are characterized by the Weber and the Reynolds numbers, and that are discriminated by 
the principal mechanism responsible for arresting the splat spreading. This paper illustrates the 
importance of correctly determining the equilibrium contact angle (a surface tension characteristic 
that quantifies the wetting of the substrate) for predicting the maximum spreading of the splat. 
Conditions under which solidification of the splat would or would not be expected to contribute 
to terminating the spreading of the splat are considered. However, our a priori assumption is that 
the effect of solidification on the spreading of a droplet, superheated at impact, is secondary 
compared to the effects of viscous dissipation and surface tension. 

N o m e n c l a t u r e  V 
a Thermal diffusivity x 
C~ Correction factor 
Cv Correction factor ~t 
d Initial diameter of droplet qb 
D Final diameter of splat 9 
Ek Initial kinetic energy at impact cy 
E~ Rise in surface tension energy 0e 
Ev Viscous energy dissipated 
s Terminal thickness of splat Pe 
tc Spreading time of splat Re 
u Velocity of impinging droplet We 

Volume of splat (droplet) 
Space variable 
Madejski's solidification parameter 
dynamic viscosity 
Dissipation function 
Density of liquid 
Liquid-vapour surface tension 
Equilibrium contact angle 
Old (spreading factor) 
ud/a (P6clet number) 
pud/t,t (Reynolds number) 
puZd/~ (Weber number) 

1. I n t r o d u c t i o n  
Much attention has been given to the rapid solidifi- 
cation of melts, particularly alloys, because of its abil- 
ity to produce new microstructures not encountered 
in conventional casting or heat-treatment processes. 
Splat-quench solidification in particular has generated 
a great deal of interest because of its especially high 
cooling rates and relative procedural simplicity. There 
exists a wealth of studies published that have investig- 
ated novel microstructures produced by splat-quench- 
ing [1 4]. 

However, relatively little work has been done to 
investigate the deformation process of the droplet as it 
impacts the surface, with consideration of its solidifi- 
cation. Because it bears directly on the material qual- 
ity of the deposition layer, the defoi'mation process is 
a very important aspect of any splat-quenching ap- 
plication. On a macro-scale, the smoothness of the 
deposition and the quality of contact between layers is 
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dependent on the degree to which the droplets flatten 
on impact. The ability of the splat to make good 
thermal contact in turn affects the microstructure of 
the deposition as governed by the cooling rate of the 
splat [5]. Also affecting the cooling rate is the thermal 
inertia of the splat which is a function of the thickness 
of the splat [6]. 

The degree of difficulty introduced by considering 
the simultaneous effect of solidification within the 
fluid kinetics of the splat-quenching problem has 
compelled researchers to uncouple the problem. The- 
oretical and experimental results have shown this sim- 
plification to be justifiable for a variety of conditions 
[7 9]. 

Studies that have uncoupled the solidification ef- 
fects from the fluid kinetics of a liquid droplet impact- 
ing the surface attribute viscous energy dissipation 
and/or surface energy effects to arresting the spreading 
droplet [10 12]. However, some ambiguity exists as 
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to the extent to which each of these effects individually 
controls the thinning of the droplet. In one early 
splat-quenching study the viscous dissipation of en- 
ergy was described as the dominant factor in the 
terminal splat thickness [101. Another splat-quench- 
ing study, published recently, asserted that surface 
tension energy was principally responsible for arrest- 
ing the spreading droplet [111. A third study, also 
published recently, in which n-heptane liquid droplets 
impacting a hot plate were investigated, combined 
both viscous energy dissipation and surface tension 
effects to predict the maximum area covered by the 
splat [12]. 

The one sPlat-quenching study in which the droplet 
spreading kinetics remained coupled with sol- 
idification demonstrated the conditions under which 
solidification could affect the flattening of the droplet 
[7]. However, this study, as well as those previously 
cited, failed to assess the separate contributions of 
viscous energy dissipation and surface tension on the 
final flatness of the splat. It is a principal purpose of 
this paper to assess the extent of these separate contri- 
butions. But first it is desirable to review the various 
existing treatments used in determination of the flat- 
tening of a liquid droplet impacting a solid surface. 

2. Review of existing models 
Since the thinning of the splat is of primary interest in 
this study, a dimensionless "spread factor" or "degree 
of flattening" is defined as the ratio of the final splat 
diameter, D, to the initial droplet diameter, d: 

= D/d (1) 

Results of all the studies reviewed here will be ex- 
pressed in terms of the spread factor so as to facilitate 
comparisons between them. 

All the treatments of a liquid droplet impacting 
a solid surface reviewed here start with the energy 
balance 

Ek = Ev + Es (2) 

which is a statement that the initial kinetic energy (Ek) 
of the droplet impacting the surface is dissipated as 
viscous energy (Ev) and surface tension energy (Es). 
The initial kinetic energy of the droplet is treated 
identically by all the studies reviewed here and is 
given as 

d 3 E k = ~ 9u 2 (3) 

where d is the diameter of the droplet before impact, 
9 is the density of the molten droplet and u is the 
impact velocity of the droplet. The viscous energy 
dissipation and the change in surface tension energy 
are handled in a variety of manners, as will be dis- 
cussed. 

2.1. J o n e s '  mode l  
Jones [10] evaluated the viscous energy dissipation by 
modelling the splat as a cylindrical volume of a vis- 
cous liquid being flattened between two parallel 
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plates. He followed an earlier theoretical analysis of 
a plastometer performed by Dienes and Klemm [13] 
and assumed that the flattening rate of the droplet was 
a constant, at one-half the impact velocity. Following 
Jones' assumptions yields for the viscous energy dis- 
sipation 

Ev - 277r i . tud2~8 (4) 
1024 

where la is the viscosity of the molten metal. 
Jones felt that the surface tension contribution 

to the termination of the droplet's spreading was 
negligible. Therefore, combining Equations 2, 3 and 
4 yields the resulting expression for the dimensionless 
spread factor 

/ 4  \1/2 
= ~ R e  1/4) (5) 

where Re is the Reynolds number given by 
Re = pud/ta (the fluid properties are of the liquid 
droplet). 

There are several problems with Jones' model. First, 
the omission of contributing surface tension effects 
restricts his solution to a limiting case which will be 
elucidated later. Second, there are assumptions in 
Dienes and Klemm's [131 analysis of the plastometer 
that are prohibitively restrictive to the droplet splat- 
ting problem. Perhaps the most inaccurate of the 
assumptions is that the radial spreading velocities of 
the splat are slow and steady-state. 

Experimental results have failed to support Jones' 
model, yielding splat thicknesses of about five times 
greater than Equation 5 would predict [9, 101. Jones 
felt that the discrepancy might have arisen from oxida- 
tion of the droplets caused by residual oxygen in the 
inert atmosphere. However, the fact that an indepen- 
dent study yielded the same discrepancy between his 
model and experimental results would appear to pre- 
clude that possibility [9]. 

2.2. The mode l  of Col l ings  et  aL 
Collings et al. [111 developed a model for predicting 
an upper bound on the final splat diameter. In their 
model, changes in surface and interfacial energies be- 
tween the droplet, substrate and ambient gas account- 
ed for the dissipation of the pre-impact kinetic energy 
of the droplet. The final calculated splat diameter was 
considered to be an upper bound because of the neg- 
lected viscous energy dissipation. Following their 
model one obtains for the energy dissipated by surface 
tension 

Es = ~(yd2( (1-cOs0e)~24 - 1) (6) 

where cr is the surface tension of the liquid vapour 
interface and 0e is the equilibrium contact angle be- 
tween the liquid and the substrate. Collings et al. [11] 
assumed that the last term inside the brackets of 
Equation 6 was negligible. This is equivalent to as- 
suming that the initial surface tension energy of the 



droplet is negligibly small. Following their assump- 
tions, combining Equations 2, 3 and 6 one obtains for 
the dimensionless spread factor ..... 

We 

< 3(1 - cOSOe)// (7) 

where We is the Weber number given by 
We = p u 2 d / o  (the fluid properties are of the liquid 
droplet). 

Collings et al. [11] proposed that the viscous energy 
dissipation was in fact negligible, so that the less- 
than-equal sign in Equation 7 could be replaced by an 
equal sign. Furthermore, they suggested that a gas film 
layer would develop between the advancing liquid and 
the substrate, causing the contact angle to approach n. 
Following these assumptions yields the expression 

= (We/6 )  1/2. (8) 

There are several problems with the treatment by 
Collings et al. [11] of the splatting droplet. First, as 
will be shown later, viscous energy dissipation can be 
neglected only for highly special cases. Additionally, 
the initial surface tension energy can typically be 25% 
(4 = 4, 0e = n/2) of the final surface tension energy, 
which brings us to question their omission of this term 
in the equations following Equation 6. Finally, their 
application of Young's equation in the treatment of 
the contact angle is questionable. Young's equation, 
which relates the surface tension energies between the 
liquid-vapour, liquid solid and solid-vapour inter- 
faces with the equilibrium contact angle, applies only 
to equilibrium conditions [14]. Therefore, the equilib- 
rium contact angle must be evaluated after the ad- 
vancing liquid has come to rest. The advancing con- 
tact angle which Collings et al. equated to the equilib- 
rium angle has been shown experimentally to be 
a complicated function of the contact-line speed [15, 
16]. It is doubtful that the equilibrium contact angle in 
the experiment of Collings' et al. was as large as n. 

The experimental results of Collings et al. [11] 
render a spread factor 100% larger than application of 
Equation 8 predicts, suggesting an incongruity in their 
model. 

where tc is the spreading time of the splat, V is the 
volume of the droplet and �9 is the dissipation function 
given by 

/~U i ~Uj~ ~U., ~(~Ul~ 2 

(lO) 

where the index 1 refers to the vertical direction and 
s is the terminal thickness of the splat. 

Substituting Equation 10 into Equation 9 and ap- 
proximating the spreading time by tc ~- d/u yields 

Ev - 3rCgud2~4 (11) 

Combining Equations 2, 3, 6 and 11 yields Chandra 
and Avedisian's [12] relationship for determining the 
spread factor: 

(9/2)44 3[(1 - COS0e)~ 2 -- 4] 
- -  + = 1 (12) 

Re We 

Chandra and Avedisian's [12] treatment of the 
splat process appears sound. However, one would 
expect their rudimentary treatment of the viscous en- 
ergy dissipation to adversely affect the results some- 
what. Chandra and Avedisian's model for predicting 
the spread factor yielded results that were 20 to 4.0% 
higher than experimentally measured results. It is 
likely that the discrepancy between experimental and 
theoretical results arose from the deficient model of 
the viscous energy dissipation. 

The vertical velocity scale of the splatting droplet 
problem is bounded by zero and u, and the vertical 
length scale is bounded by s and d. In their order- 
of-magnitude estimation of the dissipation function 
given by Equation 10, Chandra and Avedisian evalu- 
ated 5 u 1 / S x l  by characterizing the change in velocity 
by u (the highest bounding value) and characterizing 
the change in distance by s (the lowest bounding 
value). Choosing median scale values for these quant- 
ities, however, did not improve the agreement between 
Chandra and Avedisian's experimental results and the 
model. 

2.3. Chandra and Avedisian 's  model 
Chandra and Avedisian [12] in their boiling study of 
a liquid droplet impacting a solid surface accounted 
for both viscous energy dissipation and surface ten- 
sion effects. The main ingredients of their model also 
apply to the fluid kinematics of the splat-quench 
solidification problem. Their treatment of the inter- 
facial energy changes between the droplet, substrate, 
and ambient gas was essentially the same as that of 
Collings et al., leading to Equation 6. However, 
Chandra and Avedisian investigated the viscous en- 
ergy dissipation with an order-of-magnitude study. 
They approximated the viscous energy lost to the 
deformation of a liquid droplet as 

f:f  E~ = ~ d V d t  ~- OVt~ (9) 

2.4. Madejski's model 
The most advanced treatment of the droplet deforma- 
tion problem arising in splat-quenching was presented 
by Madejski [7]. His model accounts for viscous en- 
ergy dissipation, surface tension effects and simultan- 
eous freezing of the splat, without uncoupling the 
solidification problem from the fluid kinetics problem. 
Madejski modelled the splat kinetics as a spreading 
cylindrical cake, assuming that the flow was laminar 
and that the advancement rate of the freeze in the splat 
was heat transfer limited (Stefan problem). Madejski's 
treatment of the surface tension was analogous to that 
of Collings et al. [11] except that he considered only 
the surface tension energies between the liquid- 
vapour interfaces, precluding the introductfon of the 
contact angle. Madejski expressed the viscous energy 
dissipation in terms of the shear stress invoked by the 
velocity gradient within the spreading splat. However, 
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Madejski had to assume an expression for the velocity 
distribution within the splat. 

Madejski's numerical analysis yielded the degree of 
flattening as a function of four parameters: Re, We, Pe 
and ~, where K is a dimensionless parameter, intro- 
duced in Madejski's derivation, that reflects the degree 
to which the solidification arrests the flattening of the 
splat. For the case in which ~c is zero, the droplet 
flattens without solidification. 

From his analysis, Madejski was able to produce 
analytical expressions for some special cases, as well as 
a graphical solution to the most general case. For the 
case in which the flattening of the splat is arrested 
by the surface tension only, ~c = 0 = Re-1,  Madejski 
found that 

ks = (We~3) 1/2 (13) 

if We > 100. This is recognized to be equivalent to 
Equation 7 with 0e = ~/2. 

For the case in which the flattening of the splat is 
arrested solely by viscous dissipation of energy within 
the splat, K = 0 = We-1,  Madejski found that 

~v = 1.2941(Re + 0.9517) 1/5 (14) 

Alternatively, for Re > 100, Equation 14 can be ap- 
proximated as 

~v = 1.2941Re 1/~ (15) 

For the more general case in which both surface 
tension and viscous dissipation contribute to termin- 
ating the flattening of the splat, but freezing does not, 

= 0, Madejski found that 

~ee +~ee ~ = 1 (16) 

provided that Re > 100 and We > 100. 
An independent study [9] on the formation of ther- 

mally sprayed alumina in which extremely high values 
of We (103 to 2 x 104) prevailed showed Equation 16 
to yield "excellent agreement" with experimental re- 
sults. Under the conditions of this experiment, the first 
term in Equation 16, representing the surface tension 
effects, can be neglected, seeming to indicate that the 
remaining term represents a credible account of the 
viscous energy dissipated in the splat. 

Madejski's treatment [7] of the'freezing aspect of 
the droplet deformation process assumes that the tem- 
perature of the droplet a t  the time of impact is the 
solidification temperature of the metal, and that the 
onset of solidification is simultaneous with the time 
of impact. Furthermore, Madejski assumes that the 
freezing front advances through the melt in the near 
equilibrium limit controlled by the rate at which latent 
heat is transported away from the melt-freeze inter- 
face (commonly known as the Stefan problem). 
Madejski's assumptions are highly idealized and not 
very compatible with accepted rapid solidification 
theory. 

It will be the premise of this work that solidification 
does not contribute significantly to terminating the 
spreading of the splat. However, one noteworthy con- 
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dition, in which the effect of solidification can be 
expected to contribute substantially, is the case in 
which undercooling of the droplet (cooling below the 
freezing temperature) occurs prior to impact. Under 
this circumstance, nucleation can be expected to coin- 
cide closely with the time of impact, but nucleation 
sites will not be limited to the splat-substrate inter- 
face, allowing for simultaneous freezing across the 
thickness of the melt not accounted for in Madejski's 
model. Additionally, the crystal growth within the 
undercooled melt will not be heat transfer limited, 
allowing for much faster crystal growth kinetics than 
predicted by the Stefan problem incorporated in 
Madejski's model. 

Frequently, the impinging droplet is in a state of 
superheat (above the freezing temperature). If this is 
the case, then freezing cannot commence until much of 
the superheat is removed (assuming predominantly 
Newtonian cooling). Additionally, sluggish nucleation 
encourages undercooling of the melt after impact, 
which further increases the time lapse between impact 
and the start of solidification. Consequently, in a more 
physically realistic system than that depicted by 
Madejski's model, the effect of solidification on arrest- 
ing the spreading of a superheated droplet is likely to 
be secondary compared to the effects of viscous dissi- 
pation and surface tension. 

Jones [10] made the same observation: that solidifi- 
cation considerations could be neglected, by noting 
that the freezing velocities (approximated by the 
Stefan problem) were more than two orders of magni- 
tude less than typical impact velocities encountered in 
his experiments. While the rapid solidification that is 
typical of splat-quenching can produce much faster 
crystal growth kinetics than predicted by the Stefan 
problem, consideration of the undercooling encoun- 
tered in rapid solidification dictates that the reduction 
in freezing time due to higher solidification speed is 
offset by the delay in nucleation. 

The preceding review of models for predicting the 
flattening of a liquid droplet impacting a solid surface 
has illuminated several similarities and differences in 
the existing treatments with regard ~ to surface tension 
and viscous dissipation of energy. All treatments of 
surface tension effects were fundamentally the same, 
with differences arising from varying degrees of sim- 
plifying assumptions. The splat energy dissipated 
through surface tension effects was shown to be pro- 
portional to the spread factor squared plus the initial 
droplet surface tension (when considered)~ The treat- 
ments of viscous energy dissipation, however, were all 
dissimilar. The various models yielded viscous energy 
dissipation as proportional to the spread factor raised 
to the fourth, fifth, and eighth power. 

3. Se lect ion of  a w o r k i n g  model  
To pursue the objective of evaluating the relative roles 
of viscous energy dissipation and surface tension 
effects on the final flatness of the splat it becomes 
necessary to select the "best" treatment of the problem 
at hand. This is not difficult with regard to surface 



tension effects because of the apparent consensus in 
modelling this aspect of the problem. However, in 
consideration of the viscous dissipation of energy 
there is no such accord. Because it provides the most 
theoretically sound treatment of viscous energy dissi- 
pation, and has the most published experimental sup- 
port, Madejski's treatment of the problem will be 
exploited in this investigation. Madejski's description 
of the surface tension contribution to the spread factor 
given by Equation 13, however, effectively ignores the 
initial surface tension energy of the droplet prior to 
impact. To theoretically improve Madejski's model we 
will refine his treatment of the surface tension effects. 

From Madejski's model [7] we can extract for the 
viscous energy dissipation 

for Re > 100. 
Madejski's treatment of the surface tension can be 

refined by using the treatment of Collings et al. [11] 
(as well as that of Chandra and Avedisian [12]), as 
given by Equation 6. Combining Equation 17 with 
Equations 2, 3 and 6 yields 

(~/1.2941) 5 31-(1 - -  c O S O e ) ~  2 - -  43 
+ = 1 (18)  

Re We 

In their study of an n-heptane liquid droplet impact- 
ing a surface, Chandra and Avedisian [12] investig- 
ated the effect of heating the substrate to cause boiling 
of the splat as it spreads, an intriguing reversal of the 
solidification problem. In their handling of this com- 
plexity, they photographically studied the change in 
contact angle as a function of substrate temperature 
for evaluating Equation 12. They found substantial 
changes in the contact angle as the heating of the plate 
created a vapour film at the splat-substrate interface. 
The ensuing effect on the spread factor was substan- 
tial. Chandra and Avedisian found that as the contact 
angle changed from 30 to 180 ~ the spread factor was 
reduced by 40%. 

The equilibrium contact angle reflects a state of 
minimum surface free energy associated with the 
liquid, solid and gas interfaces that characterize the 
splat before solidification. It delineates a unique value 
that is independent of other influences which may 
dictate a non-equilibrium contact angle. In considera- 
tion of a spreading splat, one would expect the dy- 
namics of the "rolling" liquid flow near the moving 
contact line to have a large effect on the contact angle. 
This type of compounding effect must be accounted 
for when assessing the equilibrium contact angle. 

Some dynamic effects do have a legitimate impact 
on the equilibrium contact angle. For example, gas 
entrapment between the solid substrate and the ad- 
vancing liquid front of the splat will have an influence 
on the surface free energy associated with the 
"liquid-solid" interface. In Chandra and Avedisian's 
study [12], the droplet boiling on the substrate intro- 
duced a vapour film between the liquid and solid 
interfaces that clearly influenced the equilibrium con- 

tact angle. However, it is unclear to what extent the 
contact angles measured in Chandra and Avedisian's 
study were dictated by the vapour film effect as 
opposed to other dynamic effects. 

Chandra and Avedisian's study [12] clearly demon- 
strates that changes in the equilibrium contact angle 
have a significant influence on the spread factor. To 
further investigate the impact of the equilibrium con- 
tact angle on the spread factor, Equation 18 is solved 
in Fig. 1, for various Weber numbers, as a function of 
the equilibrium contact angle. Fig. 1 illustrates that 
for decreasing Weber number, the equilibrium contact 
angle has an increasing effect on the spread factor. If 
the droplet does not "wet" the surface (0e is large) the 
impact of the Weber number on the spread factor 
becomes large. Fig. 1 demotlstrates that incorrectly 
measuring the equilibrium contact a n g l e b y  one 
radian can easily introduce an error of more than 20% 
in the spread factor. 

4. Viscous dissipation and surface 
tension domains 

For the purpose of illustrating the relative contribu- 
tions of viscous energy dissipation and surface tension 
of terminating the spreading of the splat, a typical 
value for the equilibrium contact angle of a liquid 
metal on solid metal will be assumed. Taken the equi- 
librium contact angle in Equation 18 as n/2 yields 

(~/1.2941) 5 3(~ 2 -- 4) 
+ - 1 (19) 

Re We 

In the extreme case in which We 1 = 0 (surface ten- 
sion effects become negligible) Equation 19 becomes 
the same as Equation 15. In the extreme case in which 
Re-1 = 0 (viscous energy dissipation becomes negli- 
gible) Equation 19 becomes 

ks = ( ~ + 4 )  1/2 (20) 

In general, if the degree of flattening is predicted by 
surface tension considerations while neglecting vis- 
cous dissipation, the prediction will be higher than the 
actual value. Let ~ represent the degree of flattening 
predicted by consideration of both viscous energy 
dissipation and surface tension energy, as given by 
Equation 19. Then a correction factor can be intro- 
duced to Equation 20 in order to compensate for the 
neglected viscous energy dissipation: 

= Cs~s = Cs + 4 (21) 

Eliminating ~ from Equations 21 and 19 yields an 
equation relating the Reynolds number to the Weber 
number and correction factor: 

{C,[(We/3) + 411/2/1.2941} 5 
Re = (1 - C2)[1 + (12~We)l_ (22) 

Similarly, the degree of flattening predicted by viscous 
energy dissipation considerations, while neglecting 
surface tension effects, can be corrected by introducing 
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Figure 1 Influence of the equ i l ib r ium contac t  angle  on the spread  factor. Re = 5000 for all curves. 
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a correction factor to Equation 15: 

= Cv~v = Cvl .2941Re  1Is (23) 

Eliminating ~ from Equations 23 and 19 yields a sec- 
ond equation relating the Reynolds number to the 
Weber number and correction factor: 

( [ ( W e / 3 ) ( 1 -  C~) + 431/2) 5 
Re = \ 1 . 2 9 4 ~  (24) 

The relationships between the Weber number, 
Reynolds number and the correction factors, as given 
by Equations 22 and 24 are plotted in Fig. 2. 

Several comments are in order in assessing the 
meaning of Fig. 2. The first is that the W e - R e  domain 
can be divided into two regions. In one region the 
degree of flattening of the splat is dominated by vis- 
cous energy dissipation and in the other region the 
degree of flattening is dominated by surface tension 
effects. The border between these two domains is 
marked by the bold-face curve representing 
Cs -~ Cv -~ 0.816. The value of the correction coeffi- 
cients near the border implies that even if the droplet 
spreading is described by only viscous energy dissipa- 
tion or only surface tension effects, if the dominating 
influence is correctly selected, the error introduced by 
the simplification will be no more than approximately 
20% (according to the model). 

The second comment is that even well into the 
viscous dissipation domain the effects of the surface 
tension are still significant, while in the surface tension 
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domain the effects of viscous dissipation disappear far 
more rapidly as one moves away from the borderline. 

The results of this analysis allow us to state the 
condition under which surface tension effects domin- 
ate the termination of the spreading of the splat: 

We < 2.80Re ~ (25) 

This result is obtained by curve-fitting the bold-face 
border curve. The condition given" by Equation 25 is 
stated as such because the viscous energy dissipation 
contribution to the spread factor rapidly declines 
within the surface tension-dominated region. The al- 
ternative inverse of the condition given by Equation 
25 was not stated for the simple reason that significant 
residual surface tension effects extend well into the 
viscous energy dissipation region. 

With the insight gained from the above analysis we 
can now assess the assumptions about the relative 
magnitude of viscous energy dissipation and surface 
tension effects made by Jones [10] and Collings et al. 
[11] in their respective experimental studies. Jones' 
[10] experiment is characterized by Re ~-110 and 
We ~- 360, which is well into the viscous dissipation 
domain of Fig. 2. From Equation 24 we can determine 
that the spread factor should be about 98% correctly 
predicted from viscous energy dissipation alone. 
Therefore, it is apparent that the  failure of Jones' 
model to predict the spread factor was not the result of 
neglected surface tension effects. 
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The experiment of Collings et al. [11] is character- 
ized by R e  ~- 4.5 x 10 4 and W e  ~- 92, which is well into 
the surface tension domain. From Equation 22 we can 
determine that the spread factor should be about 98% 
correctly predicted from surface tension effects alone. 
However, the model of Collings et al. which was based 
on surface tension effects alone predicted a spread 
factor 100% too small. The grossly large discrepancy 
indicates that their treatment of the equilibrium con- 
tact angle was incorrect. Use of Equation 19 (which 
assumes the value of the contact angle to be 0e = ~/2) 
predicts a spread factor 28% smaller than what 
Collings et al. obtained experimentally. The improved 
prediction provided by Equation 19 demonstrates the 
importance of contact angle consideration as well as 
inclusion of the initial droplet surface tension in the 
model. 

5. C o n c l u s i o n  
The results of this study have clarified the extent to 
which the separate contributions of viscous energy 
dissipation and surface tension effects determine the 
terminal thickness of a liquid droplet impacting a solid 
surface. This paper has defined two domains, charac- 
terized by the Weber and Reynolds numbers, which 
are discriminated by the principal mechanism respon- 
sible for arresting the splat spreading. In doing so, we 
have introduced the condition, stated by Equation 25, 
under which surface tension effects dominate the ter- 
mination of the spreading of the splat. We have also 
shown that surface tension is significant to the spread 

factor even well into the viscous dissipation domain, 
while the effect of viscous dissipation rapidly disap- 
pears in the surface tension domain (shown in Fig. 2). 

This paper has illustrated the importance of cor- 
rectly determining the equilibrium contact angle for 
predicting the spread factor of a splat (Fig. 2). Im- 
proper treatment of the equilibrium contact angle can 
easily introduce significant error in predicting the 
spread factor. Special attention has been given to the 
equilibrium condition imposed on the contact angle 
measurement, resulting from application of Young's 
equation in the modelling of surface tension effects. 

Conditions under which solidification of the splat 
would or would not be expected to contribute to 
terminating the spreading of the splat were considered 
in this paper. We illuminated the inadequacies of 
modelling the freezing kinetics found in the splat- 
quenching problem with a simple Stefan problem ap- 
proach. However, our a pr ior i  assumption was that the 
effect of solidification on the spreading of a droplet, 
superheated at impact, is most often secondary com- 
pared to the effects of viscous dissipation and surface 
tension. 

Our review of the various treatments used in the 
theoretical determination of the spread factor, dis- 
closes a need for more experimental studies to further 
evaluate existing treatments of the splat problem, as 
well as to suggest new refinements of these models. We 
exploited facets of existing models which we believe 
were the most sound; however, we appreciate the need 
for further refinement of existing theories regarding 
splat kinetics. 
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